2019 7th International Engineering, Sciences and Technology Conference (IESTEC)

A 3D convolution accelerator implemented on FPGA
using SDSoC

Jhon Ordofiez" and Guillermo Sahonero-Alvarez”
Centro de Investigacion, Desarrollo ¢ Innovacion
en Ingenieria Mecatronica
Universidad Catdlica Boliviana “San Pablo”
La Paz, Bolivia
Email: *jhon.ordonez@ucb.edu.bo, “guillermo.sahonero@ucb.edu.bo

Abstract—Convolutional Neural Networks (CNNs) have
become a popular and useful deep learning algorithm. However,
the requirements of computation have also increased. As
implementation of CNNs in Embedded Systems or Cyber-Physical
Systems (CPS) is required, the need of efficient technologies of
computation like FPGAs arise substantially. In this paper, we
present a 3D convolution accelerator implemented on a Xilinx
ZCU102 FPGA board. It achieves 32.08 GOP/s of performance
and an efficiency of 3.58 GOP/s per Watt. This accelerator has
been developed in Xilinx SDSoC environment.

Keywords—3D convolution, FPGAs, SDSoC

L.

In the last years, Convolutional Neural Networks have
shown their potential in computer vision applications. In order
to improve performance, researchers have developed many
architectures of CNNs, for instance, AlexNet, VGG, LeNet,
ResNet, etc. As deep neural networks increase their
performance, these also demand more powerful computation.
Therefore, hardware optimization for such algorithms is
necessary.

INTRODUCTION

Graphics Processing Unit (GPU) has become popular for
inference and training of CNNs. Its architecture consists of
parallel processors that accelerate the processing of tensors
commonly used in CNNs. However, GPUs are limited by power
dissipation requirements and high consumption, making them
unsuitable for embedded systems [1].

The alternative to the wusage of GPUs are Field
Programmable Gate Arrays (FPGAs) which are well known for
their energy efficiency. FPGAs have many advantages such as
reconfigurability, flexibility, high performance, and tools that
reduce development time. On the other hand, Application-
Specific Integrated Circuits (ASIC), which are another type of
hardware resource, lack of flexibility as these devices are not
programmable or reconfigurable. In consequence, FPGAs have
a shorter design time than ASICs [2].

A CNN is composed of three different types of layers:
Convolutional layer (CONV), Pooling layer (POOL) and Fully
Connected layer (FC). CONV layer extracts information from N
feature maps and produces M outputs which are generated by M
filters of dimension k X k, where k is the kernel size. The filter

978-1-7281-1691-4/19/$31.00 ©2019 IEEE
DOI 10.1109/IESTEC46403.2019.00126

677

multiplies each element of a section in the feature map. After
multiplication, a bias is added. The filter moves through the
feature map with a certain stride. Furthermore, in the borders a
padding can be applied. That means to add zeros around the
feature map in order to keep the same dimensions after
convolution. Finally, an activation function is applied, typically
ReLU. POOL layer reduces dimensionality to avoid data
redundancy: max and average pooling are usually employed for
this stage. FC layer appears at the end of the network to compute
classification task. More than 90% of operations in a CNN
involves convolutions [2]. Consequently, implementations
should focus on parallel computation using multiple multiply-
and-accumulate (MAC) units. In this work, a 3D convolution
accelerator is proposed, and the design is implemented on a
Xilinx ZCU102 FPGA board. Our results are encouraging as
they show that our design can strongly compete with other
works.

This paper is organized as follows: Section II analyzes
related works, Section III describes hardware accelerator
implementation, results and discussion are presented in Section
IV and, finally, conclusions are made in Section V.

II. RELATED WORK

Different optimization techniques and approaches for
convolution have been developed. Nevertheless, two of them
are studied here: data format precision and development
environment.

A. Data format precision

Depending on bit-width precision, resource utilization and
computational complexity can be reduced, However, a short
data format reduces accuracy: an evaluation of the trade-off
between bit-width precision and resources is imperative. Figure
1 shows the quantity of implementations in different bit-width
precision formats, being 16-bit fixed point the most used.
Several implementations have shown that using fixed point
format does not reduce significantly final accuracy [2]-[4].
Therefore, our implementation compares resource utilization
between 8 and 16-bit fixed point formats.

(1]
=

10

Number of works

5
4 4
H 3 3 H
16 bit 32 bit binary 8 bit 16 bit 8 bit other

fixed float integer integer fixed fixed
point point point

Fig. 1. Number of works with differents bit-width precisions

B. Development environment

In FPGA applications is important to select an appropriate
Integrated Development Environment (IDE). There is a variety
of software to synthesize and implement projects on FPGAs.
However, most developers prefer Vivado HLS as shown in
figure 2. This due to it offers short development time in a
familiar C/C++ programming language instead of HDLs
(Hardware Description Language).

Most related works were implemented on Xilinx Zynq
boards, for which, SDSoC offers a suitable environment as it
provides an optimized compiler and an automated software
acceleration in Programmable Logic (PL). Hardware
optimization is carried out by pragma directives. Moreover,
SDSoC eases communication between Processing System (PS)
and PL due to automatic AXI (Advanced eXtensible Interface)
channels generation.

Danopoulos et al. [S] accelerated a CNN for image
classification with SDSoC and Caffe integration. The
accelerator was implemented on Zynq 7020 and achieved up to
98x speed-up compared with ARM CPU implementation. They
constructed a highly a pipelined architecture with minimum
latency that performed MAC operations efficiently. On the other
hand, Amiri et al. [6] developed a binarized CNN on a Zynq
7020 using SDSoC directives and HLS pragmas like
array_partition, SDS async and SDS wait. This work reported
an inference speed up from 29.68 to 90.82 images/sec.

Most of the previous works were focused on PE (Processing
Element) optimization. Huang et al. [4] proposed a computation
module that contains several Winograd PEs and an accumulator.
PEs fetch the input data from on-chip buffers and send the
processed data to the accumulator buffer. The cached output
results are written back to an off-chip memory. In contrast,
Ahmed et al. [10] have designed a full custom MAC unit with 4
input feature maps elements. This design does not depend on
using any dedicated multiplier nor embedded DSP blocks.
Moini et al. [7] and Su et al. [9] also used MACs as computation
elements. In [7], each MAC module is used to calculate the pixel
for one output feature map and has a small kernel memory that
contains coefficients. Input data is fed to the MAC modules, it
is multiplied in the corresponding pixel from their kernel

memory and summed the final result. Su et al. [9] suggested to
map the 3D convolution to a matrix multiplication operation.

Although Vivado HLS is widely used, it is not totally
adequate for Zynq and Zynq Ultrascale platforms because CPU-
FPGA communication is complex. SDSoC environment should
be evaluated for 3D convolution accelerator implementations on
FPGAs that require CPU coprocessing.

20} mm

10 |

~1

Number of Works

Diazi

Vivado Verilog VHDL SDSoCSystem Mot others
HLS SDAccelVer- spec-
ilog ified
HDL

Fig. 2. Integrated Development Tools

III. PROPROSED ACCELERATOR SCHEMA

The accelerator has a pipelined architecture as shown in the
pseudocode (Figure 4). It operates 3D convolution of different
sizes of input feature maps, up to 256 X 256 and 64 channels
with a kernel size of 3. Furthermore, it can operate two bit-width
formats: 8-bit fixed point (4-fractional bits) and 16-bit fixed
point (8-fractional bits). Fractional bits are easily configurable
by using ap_fixed library from Vivado HLS. Figure 3 shows the
general accelerator schema.

A. Architecture
This architecture has the following components:

1) FIFO IN/FIFO OUT: These FIFOs are responsible for
storing momentaneously data from PS to accelerator
(PL) and viceversa. Both have been declared as HLS
Streams with depth of 32 and consume BRAM (Block
RAM) resources. Data from PS were allocated through
SDSoC function sds_alloc() and the directive: #pragma
SDS data zero_copy.

2) Buffers: Each buffer stores (K — 1) rows of the input
feature map, where K is the kernel size. In our
implementation K =3 was selected. The directive
#pragma HLS array partition complete dim =1
implements each buffer as a BRAM partitioned in 2
independent memories.

3) Register Bank: All kernel coefficients are stored as
registers in order to access them immediately. This
configuration is carried out by #pragma HLS array
partition complete dim = 0 directive.

678

NS
& Sx
/| || [Cenvolution compute
1
1 —_—
0 I FIFO
- o ouT
T o @ | RelU L
£ 5 LHlL -G
= =1 I =]
[5) o |o
T
=
width(W)
kernel
Fig. 3. Hardware accelerator schema for 3x3 kernel
4) MAC units: Each unit multiplies and accumulates data e #pragma HLS array partition: Implements variables
from buffers (input feature map) and register bank as storage elements either BRAM or register. Moreover,
(kernel). It executes 3 vector convolutions it splits an array into smaller arrays or individual
simultaneously. #pragma HLS dependence inter false elements.
directive provides extra information to the compiler in
order to avoid conflicts in the for loop. 12 sds_alloc(Input, Output, kernel)
5) Shift buffers and adder: In order to manage each vector 2: read_input(Input, ':”S’ “"f‘"r) }
convolution result, shift registers control dataflow from kS f‘“" Af E {0 ---- CHANNELS} do]
MAC units. Finally, an adder sums all independent 4 initialize(kernel, buffers,
results. Shift registers were also partitioned like the shift_registers.accumudator_mem)
register bank. s: #pragma HLS array partition kernel / shift_registers /
6) Accumulator Mem: This memory adds the current output & lt?uilgrs i lf)lccu1m;ia}t._ori_;nen; idina} d
of convolution and the previous one. Once all channels : Or E_{ """ “-? L B . f)'”“” ng } do
are operated, bias is added. Accumulator Mem is the 7 for j € {0,.... Width + 2 % padding} do
largest memory in the architecture, and it was partitioned & #pragma H!AS DEPENDENCE buffers / accumu-
using #pragma HLS array partition complete dim = 1 lator_mem inter false
directive. 9: #pragma HLS PIPELINE
L) 10: if padding-condition then
7) ReLU Module: 1t executes ReLU activation function.

SDSoC provides functions that are translated to hardware.
The complete process of compilation includes synthesis,
implementation, bitstream generation and integration of binary
file for PL and executable file for PS. The main functions and
directives used in our implementation are:

sds alloc(): This function allows that PL can access a
certain section of the DDR memory located in PS.

#pragma HLS pipeline: It allows the concurrent
execution of operations.

#pragma HLS dataflow: This directive is used to
compute 8 kernels simultaneously for convolution.

679

read_stream_data(inStream)
12: end if

store_buffers()
window_comvelution()

15: store_shiftregisters()

16: sum_shiftregisters()

17: store_accumulate_accumulator_mem()
18: if # =CHANNELS then

19: ReLU_write_data(output)

20 end if

21 end for

22: end for

23: end for

Fig. 4. Pseudocode for the SDSoC algorithm

e f#pragma HLS dependence: Provides additional
information when different addresses of a memory are
accessed.

B. Experiment setup

The proposed accelerator was implemented on a Xilinx Zynq
ZCU102 Ultrascale. This evaluation board provides designers a
rapid prototyping platform and many useful resources. The
maximum frequency is 1.5 GHZ for PS and 300 MHz for PL.

All binary and executable files are transferred to the target
through a SD card. The board runs Linux operating system and
its terminal is accessed by serial communication.

IV. RESULTS AND DISCUSSION

The accelerator was designed by using SDSoC and
implemented on a ZCU102 board. Table I shows the comparison
of the resource utilization of using 8 and 16-bit fixed point
format. Moreover, 8 kernels are computed in parallel. There is a
considerable difference in BRAM and DSP consumption. Both
implementations consume a little percentage (4.29%) of DSPs,
only 108 of 2520 available. The block RAM usage is equal to
58.33 %. This is because our design has made use of many
memories for input data, kernel coefficients and accumulators.

TABLE L RESOURCE UTILIZATION
8-bit 16-bit
Resource
used % utilization used % utilization

LUT 122 106 44.55 122 722 44.78
FF 135 894 24.79 181 186 33.05
BRAM 624 34.21 1064 58.33
DSpP 36 1.43 108 4.29

Our hardware accelerator executes 0.464 Giga operations in
14.46 ps for 16-bit width precision where execution time was
estimated by measuring the number of cycles of the external
clock of ZCU102 board which runs on 1200 MHz. Additionally,
this implementation only dissipates 8.97 watts and achieves a
performance of 32.08 GOP/s and an efficiency of 3.58 GOP/s

per watt. Thus, our implementation is suitable for embedded
systems.

In Table II, a comparison with related works is presented.
Our performance is similar to [7] and [9], but, by recalling Hu et
al. [8] which implementation consumes more than 2000 DSPs,
our implementation requires of less DSPs. As many DSPs in
usage increase power consumption, our design needs less energy
to achieve similar performance. On the other hand, regarding the
work presented by Ahmed et al. [10], the shorter format (8-bit
fixed point) and zero utilization of DSPs is overcame by our
design due to the few DSP’s resource employment. In terms of
efficiency, [7] reported a low power consumption (less than 10)
and a performance of 38.4 resulting 3.84 GOP/s per watt in
efficiency, which is similar to ours (3.58 GOP/s per watt).

From the programming perspective, [7] and [10] used hardware
description languages while we propose a high-level design to
simplify the acceleration process. On the other hand, Xilinx
SDAccel/openCL is proposed for parallel programing across
heterogeneous platforms like KCU1500 [8].

V. CONCLUSION

This paper proposes a FPGA-based accelerator for large
scale 3D convolution in order to accelerate the inference task in
CNNGs. It computes 8 kernels in parallel, reducing latency. The
optimization has been developed by means of SDSoC functions
and pragma directives which allow us to focus on efficient
hardware. The accelerator is implemented on Xilinx Zynq
Ultrascale ZCU102 platform. It achieves a performance of 32.08
GOP/s and an efficiency of 3.58 GOP/s per watt, which is
suitable for power limited embedded applications. Additionally,
implementation for 16-bit fixed point consumes more BRAMs
than 8 bits, but in both implementations DSP utilization is low
(less than 5%). Finally, it should be remarked that SDSoC
should be explored because it reduces the development time for
Zynq applications.

REFERENCES
[1] H. Yonekawa y H. Nakahara, «On-chip memory based binarized

convolutional deep neural network applying batch normalization free
technique on an FPGA,» Proceedings - 2017 IEEE 31st International

TABLE II. COMPARISON WITH PREVIOUS WORKS

Moini et al. [7] Huetal. [8] Sun et al. [9] Ahmed et al. [10] QOur work
Performance (GOP/s) 384 54.6 49.31 4.17 32.08
Frequency (MHz) 150 Not reported 100 834 50
DSP utilization 391 2184 198 0 108
Precision 16 fixed 16 fixed 16 fixed 8 fixed 16 fixed
Device Xilinx XC7Z045 Xilinx KCU1500 Xilinx XC7Z020 Intel Arria 10 Xilinx ZCU102
IDE Vivado-Verilog SDAccel Vivado HLS VHDL SDSoC

680

Parallel and Distributed Processing Symposium Workshops, IPDPSW
2017, pp. 98-105, 2017.

F. Sun, C. Wang, L. Gong, Y. Zhang, C. Xu, Y. Lu, X. Li y X. Zhou,
«UniCNN: A Pipelined Accelerator Towards Uniformed Computing for
CNNs,» International Journal of Parallel Programming, vol. 46, pp.
776-787,2018.

C. N. Networks, N. Cui, D. Zhang, J. Liu y X. Zhou, «A High-efficiency
FPGA-based Accelerator for Convolutional Neural Networks using
Winograd Algorithm A High-cfficiency FPGA-based Accelerator for
Convolutional Neural Networks using Winograd Algorithm,» 2018.

S. Moini, B. Alizadeh, M. Emad y R. Ebrahimpour, «A Resource-
Limited Hardware Accelerator for Convolutional Neural Networks in
Embedded Vision Applications,» IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 64, pp. 1217-1221,2017.

Y. Ma, Y. Cao, S. Vrudhula y J. Seo, «Optimizing the Convolution
Operation to Accelerate Deep Neural Networks on FPGA,» pp. 1-14,
2018.

681

[6]

[7

[8]

[9

L. Hu, Recent Developments in Intelligent Computing, Communication
and Devices, vol. 555, Springer Singapore, 2017, pp. 651-657.

L. Gong, C. Wang, C. Li, H. Chen y X. Zhou, «<MALOC : A Fully
Pipelined FPGA Accelerator for Convolutional Neural Networks with
All Layers,» vol. XX, pp. 1-12,2018.

D. Danopoulos, C. Kachris y D. Soudris, «Acceleration of image
classification with Caffe framework wusing FPGA,» 2018 7th
International Conference on Modern Circuits and Systems Technologies,
MOCAST 2018, pp. 1-4, 2018.

M. Amiri, M. Hosseinabady, S. Mcintosh-smith y J. Nunez-yanez,
«Multi-Precision Convolutional Neural Networks on Heterogencous
Hardware,» pp. 425-430, 2018.

[10] H. O. Ahmed, M. Ghoneima y M. Dessouky, «Concurrent MAC Unit

Design using VHDL for Deep Learning Networks on FPGA,» 2018
IEEE Symposium on Computer Applications & Industrial Electronics
(ISCAIE), pp. 31-36, 2018.

