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SPECIAL ISSUE
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ABSTRACT
In order to facilitate communication and collaboration between researchers, Brain–computer interfaces 
(BCI) require a generally applicable functional model as well as a common vocabulary. The IEEE P2731 
working group is in the process of developing such a functional model and a lexicon of BCI terminology. 
Such a functional model has multiple aspects including the control interface, physiology, transducers, 
etc. This current paper focuses on the control interface aspects of that model. Having a generally 
applicable control interface model will facilitate interdisciplinar y research and communication. The 
control interface is a critical part of the functional model and is described in this current paper. The 
control interface presented intentionally is intentionally kept general in order to be widely applicable. 
Some details are specific to a particular application and are thus left to those applications. It does 
contain the encoder (which also contains a decoder), with a feedback submodule.
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1. Introduction

Brain–computer interface (BCI) is not a new tech
nology. Electroencephalograph (EEG) was first intro
duced in 1875. BCI has expanded to include 
Functional Magnetic Resonance Imaging (fMRI) 
[1], Functional near-infrared spectroscopy [2], 
Magnetoencephalography (MEG) [3], and many 
other techniques allow the recording of brain signals. 
Steady-state visually evoked potential (SSVEP) [4] 
provide signals that are responses to visual stimuli 
and can be measured by BCI. All of these various 
technologies are well described in current literature. 
However, despite over a century of research, there 
can be a lack of cohesion in terminology. The IEEE 
P2731 workgroup is working on a common termi
nology that could be widely used by a broad range 
of BCI researchers. The work of the IEEE P2731 
working group is ongoing. This current paper is 
part of a special issue consisting of papers written 
by various subgroups of the P2731 working group, 
each describing a portion of the work being done. 
This is, by definition, incomplete work. One purpose 
of publishing work in progress is to give the wider 
BCI community an opportunity to provide input.

It should be noted that there are existing BCI glossary’s 
[5,6], and those have been referenced in the work of the 
IEEE P2731 working group. The goal of the working group 
IEEE P2731 is not to supplant existing vocabularies, but to 
bring diverse vocabularies together into a coherent stan
dard for BCI terminology. While there is extensive overlap 
in current vocabularies there are also areas of inconsis
tency. A standardized vocabulary addresses that issue. 
Integrating existing vocabularies, and filling any gaps 
therein is necessary to facilitate research communications. 
This working group’s vocabulary will fulfill that goal and 
will be standardized by the IEEE.

The glossary is also being concurrently developed with 
a universal functional model for BCI. It should be apparent 
that with the diversity of BCI applications, a universal 
functional model will, by definition, need to be broad. 
The ability to be applicable to all areas of BCI research 
necessitates a certain lack of granularity in the functional 
model.

Applications for BCI are being continuously developed, 
and new applications are emerging frequently. The encod
ing required is often determined by the specific applica
tion, or a particular task that needs to be achieved. The 
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control interface may therefore be defined by the charac
teristics of the control interface including operator state 
(active/passive), bit rate, error approximation, etc. In this 
paper, we review the various control interface’s seen in 
literature, describe the control interface model proposed 
by the P2731 working group and discuss the application of 
the model to standardize and improve communication 
within the BCI community and beyond. This paper’s orga
nization is as follows: Section II presents the literature 
review concerning different control interface methodolo
gies. Section III describes the proposed model of the P2731 
working group. In Section IV, the authors show the appli
cation of the model. Finally, in Section V, conclusions of 
this work are provided

2. Review of literature

There currently exist frameworks for the design of BCI [7]. 
Such frameworks tend to be focused on specific BCI appli
cations. This means that while such frameworks are quite 
effective, their efficacy may not be broadly applicable to the 
diverse areas of BCI research. The current study is focused 
specifically on the control interface. The term control 
interface was first applied to BCI in 2003 by Mason and 
Birch [7]. The Control Interface (CI) collects data extracted 
by the signal processing of the transducer in a BCI system. 
(Please see the paper on the transducer from IEEE P2731 
workgroup also in this special issue.) And the control 
interface also sends data back to the transducer, usually 
in the form of feedback. Transducers tend to alternate 
between sending signals and receiving feedback [10]. 
There are existing standards that support transducer inter
faces, including the IEEE P1451.5 Standard for a Smart 
Transducer Interface [11].

The control interface converts outputs from the trans
ducer into commands applied to actuators and other sys
tems in the BCI system. It also applies the relevant BCI 
paradigm (e.g. P300 wave) to drive feedback and generate 
the desired actions or stimuli if-and-when required. The 
P300 wave is only one example of a signal processed by 
a BCI. However, the P300 is illustrative of the type of signal 
that a BCI will process. The P300 wave is an event-related 
brain potential that refers to a spike in activity approxi
mately 300 ms following presentation of the target stimu
lus [8]. Recent work has included using Augmented Reality 
in conjunction with P300 BCI [12]. This continued expan
sion of how to utilize signals presents yet more diversity in 
control interface design.

Ramadan and Vasilakos [13] described the importance 
of the control interface. Their study described the prepro
cessing, feature extraction, and signal classifications as 
precursors to control signals. While their study was 
broader than just control interface, the study demonstrated 

that the control interface is a critical element of BCI. This 
strongly indicates that a functional model, including 
a control interface is an important component to facilitate 
communication among researchers. There is some speci
ficity of the control interface to particular applications. 
This may seem to be an impediment to generalizable 
control interface terminology and a universal control inter
face as an aspect of a functional model for BCI. However, 
that is not the case. It is common in systems engineering to 
defined broad functionality that is applicable to many 
different specific implementations [14]. This broadly 
applicable approach is the approach being used with the 
P2731 working group functional model. Figure 1 shows an 
overview of the control interface portion of the BCI func
tional model.

In the universal model of the control interface, the 
encoder maps sequences of logical symbols, such as cube 
rotation, flashing alphabets, etc., into semantic symbols, 
such as typing a character, driving a wheelchair, etc [9]. 

Figure 1. Block diagram of the control interface proposed by the 
P2731 working group showing the encoder and the feedback 
modules. Note there are inputs depicted in Figure 1. These will 
be related to other aspects of the functional model that are 
covered in other papers in this special issue. In order to see the 
entire functional model, refer to this special issues editorial.
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Feedback functionality can be accomplished via control 
messages, display, and communication protocols. The 
form of feedback is often used to also describe the BCI 
application, and it is commonly used interchangeably to 
describe a particular system. However, they are function
ally distinct.

Design for BCI has focused on a wide range of 
approaches. Much of the research regarding control inter
faces for BCI have been for very specific purposes. Some 
studies have focused on specific attributes of the BCI inter
face such as types of electrodes used [15]. In recent years, 
wireless control interface modalities have been the focus of 
research [16]. Each control interface has its stipulated 
requirement of the logical to semantic symbol mapping 
and the feedback. Table 1 also provides the different types 
of control interfaces and the respective input and outputs to 
the control interface. Each type of control interface also has 
variations in complexity of control. BCI control interfaces 
may therefore be classified in different ways but the three 
most common classifications will be elaborated on here.

(1) Utility control interfaces may be classified as assis
tive or augmentative. Assistive BCIs are frequently 
designed from a utilitarian perspective [17]. 
Control of specific prosthetic and assistive devices 
has also been the focus of BCI interface studies [18]. 
One application is the control of robotic arm sys
tems [19]. Robotic control has been further refined 
to implement utilization of EEG-Based control of 
assistive technologies for patients with lower limb 
dysfunction [20][21]. Spellers, for example, are also 
primarily assistive technology used in healthcare. 
Beyond health-care settings, there has even been 
research into areas, such as controlling unmanned 
aerial vehicles via BCI interfaces [22], games, appli
cations in robotics and aerospace missions [23][27].

(2) Complexity Based on its level of feedback, a system 
may be considered simple, intermediate, or com
plex. Simple systems comprise control interface 
s such as displays for communication, word proces
sing, web browsing, etc., where feedback is 

primarily visual [32]. Intermediate control interface 
are interfaces that require more complex interac
tion with the user, such as a wheelchair, where the 
controller needs to be aware of the surroundings 
while interacting with the control interface. 
Complex control interfaces require a higher level 
of control such as prosthetic limbs moving in 3D 
space, exoskeletons, etc.” Here, the user not only 
has to focus on the device and their surroundings, 
but also has to engage with multisensory feedback 
from their control interface.

(3) BCI can also be categorized based on the control 
interface input, that is, discrete or continuous con
trol input. Here discrete input may be received as 
discrete states from mental imagery or an evoked 
response representing discrete states received at 
discrete time points. Continuous input may be 
updated in real-time describing the relative position 
or movement in 2D or 3D space.

In Table 1, the n discrete states are the specific input 
states, with the output representing the number of com
mands. This is the logical to semantic symbol mapping 
previously described.

The current body of research is replete with important 
studies on the various aspects of BCI control interface. 
However, what is currently lacking is a coherent, generally 
applicable model of a BCI control interface. Such a model 
would facilitate research across the entire spectrum of BCI 
research.

Shih, Krusienski, and Wolpaw state: ‘BCI system 
consists of four sequential components: (1) signal 
acquisition, (2) feature extraction, (3) feature transla
tion, and (4) device output. These four components 
are controlled by an operating protocol that defines 
the onset and timing of operation, the details of 
signal processing, the nature of the device com
mands, and the oversight of performance’. [25] This 
description of BCI components is relevant to devel
oping an effective functional model for BCI. These 
components are addressed in the P2731 working 
group functional model.

The Shih, Krasinski, and Wolpaw description is 
consistent with the functional model being proposed 
by the P2731 working group. The transducer is respon
sible for feature extraction and sends logical symbols to 
the Control Interface, specifically the encoder. The 
control interface’s encoder then encodes those sym
bols. Feedback is related to device output. These fun
damentals are true, regardless of the specific 
implementation of BCI. It is these general concepts 
that can form a widely applicable functional model 
for BCI.

Table 1. Table showing the control interface types and the 
respective inputs and outputs to the control interface.

Control Interface Input (logical) Output (Semantic)

SSxEP (Visual, Somatosensory) n discrete 
states

m commands 
(m ≥ n)

mu-rhythm Analog control Analog/Digital 
control

Mental Imagery n discrete 
states

m commands 
(m ≥ n)

P300 n discrete 
states

m commands 
(m ≥ n)

xEP (Visual, Acoustic, 
Somatosensory)

n discrete 
states

m commands 
(m ≥ n)
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3. Description of the model

In general, no direct processing of brain signals occurs in 
a control interface. Rather, the module implements encod
ing strategies to convert sequences of logical symbols (e.g. 
the output of a classifier) into semantic symbols (e.g. the 
selection of a character in a spelling application). This is 
how the classical P300 Speller works [26]: each pair of rows 
and columns (the logical symbols, or the labels of 
a classifier) corresponds to a semantic symbol (the char
acters of the English alphabet, the digits, and the space 
char). The key to note, however, is that no direct processing 
occurs in the control interface. Brain signals are first classi
fied as logical symbols by the transducer. Then, that trans
ducer output is processed by the control interface.

The control interface is characterized by the input 
and output interfaces, which are represented by the 
logical and semantic alphabets, respectively. One can 
then easily replace a control interface provided the 
new control interface can operate with the original 
alphabets. In the following subsections, the components 
of a control interface are described.

3.1. Encoder

The purpose of an encoder is to translate signals into a form 
usable by a controller, for example, a physical or virtual 
actuator. This process is how a user of a BCI encodes their 
intentions. The encoder, within the control interface imple
ments encoding strategies to convert sequences of logical 
symbols (e.g. the output of a classifier within the transdu
cer) into semantic symbols (e.g. the selection of a character 
in a spelling application). This is how the classical P300 
Speller works [26]: each entry in a grid of rows and columns 
(the logical symbols or the classifier labels) corresponds to 
a semantic symbol (i.e. a digit or a character of the English 
alphabet). Encoders, as the name suggests, encode incom
ing signals into a symbolism that is appropriate for the 
specific application.

In principle, any neurological signal can be encoded into 
symbolism. Electrical signals detected from the scalp are 
the most common. However, this is more due to pragmatic 
considerations than for scientific reasons. It is less intrusive 
and less expensive to utilize EEG to detect brain activity 
than other signals, such as fMRI.

A few publications simply refer to an encoder, with 
the decoder being implied. One goal of any encoder is to 
be able to identify the sensory input from associated 
neural spike patterns [10]. There are a wide range of BCI 
encoders [28]. The model being developed by the P2731 
working group provides a general overview of the enco
der as part of the control interface.

Given the purpose of an encoder, improving the recog
nition of neural patterns is an important aspect of encoder 
design. Concurrent with improving pattern recognition is 
the integration of machine learning and BCI encoding [24]. 
Machine learning is an effective tool for improving signal 
classifications. Of particular research interest has been 
ensuring that BCI encoding is not overly coupled to 
a specific user and is instead generalizable [29]. This phe
nomenon is often referred to as subject invariance [23,30]. 
This simply means that the encoding process must be 
applicable, regardless of the specific user.

3.2. Feedback

Feedback is central to any control interface. Feedback 
comes in many forms. As one example, neural amplifiers 
typically utilize two seperate feedback path structures to 
realize a high-pass filter [28]. This is accomplished with two 
subthreshold-biased transistors or with two diode- 
connected transistors. This is related to the complexity or 
level of feedback, that is, simple, intermediate, and com
plex. The variation between simple, intermediate, and com
plex was previously described.

It is necessary for the control interface to commu
nicate with the transducer, as well as receive commu
nication from the transducer. The communication from 
the control interface to the transducer is provided by 
feedback from the control interface.

Feedback is also provided by the control interface to the 
user depending also on the input received by the control 
interface from the transducer (TR). The control interface 
can receive control signals from two different TR elements: 
from a classifier and/or from a regressor. This feedback is 
essential to a fully functional BCI. Without feedback, it is 
difficult to modify actions to achieve a given goal. That 
modification can be the user modifying, or other portions 
of the BCI. In either case, feedback is required for mean
ingful modifications.

In one implementation, a digital message is received and 
can be processed (e.g. decoded), as shown in Figure 2, 
which describes an SSVEP-based BCI during a free-mode 
session. The elements of the FM that are inactive during it 
are grayed, while those in green are active only before the 
session (e.g. to load weights or train classifiers).

In another implementation, instead, the control inter
face may be responsible to also generate the logical symbol. 
In [31], in fact, where a 2-D cursor control is achieved by 
means of the modulation of the mu-rhythm, a trial is 
completed and a selection is performed when a cursor 
hits a target on a 2-D screen within a predefined time, 
otherwise the selection is aborted. It is then the control 
interface that can identify when this event occurs, because 
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the TR is unaware of the internal state of the control inter
face. In Figure 3 a mu-rhythm based BCI during a free- 
mode session is described with gray and green elements 
that indicate those inactive or active only before the begin
ning of the session.

Figure 2 provides insight into how the control inter
face is interacting with the other relevant components. 
These other components include neurophysiology and 
subject psychology as well as engineering components, 
such as the transducer. Each of these components is 

Figure 2. SSVEP session.

Figure 3. Mu-rhythm.
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described in one of the other papers in this special issue. 
While the focus of the current paper is on the control 
interface, Figure 2 should provide insight into how that 
component is integrated into the entirety of BCI.

4. Application of the model

It has been demonstrated [29] that the adoption of 
different encodings along with different control inter
faces affects the performances of BCIs. This is often 
a cause of confusion because control interface does not 
directly handle brain signals whereas transducers do. 
This suggests that if one wants to demonstrate the 
ability of a BCI system to correctly identify brain pat
terns, the performance should be evaluated at the output 
of the transducer (e.g. at the classifier output), while the 
whole system should be evaluated after the control 
interface.

It must be realized that the adoption of a more or less 
efficient control interface could affect the psychological 
state of the user (e.g. increase motivation or frustration). 
This can further affect the SNR (Signal-to-Noise Ratio) 
of the brain patterns to be detected and then the perfor
mance of the transducers (e.g. accuracy of the classi
fiers). This is also one of the reasons why psychological 
and physiological elements are included in the func
tional model. While the number and diversity of public 
datasets increases, it can be possible to model and profile 
users to provide strategies to optimize BCI perfor
mances according to users’ psycho-physiological state.

A key requirement to applying the current model is 
clear and objective evaluation criteria of performance. 
Such criteria must recognize the practical control interface 
function within BCI – user interaction cycle. The control 
interface is the clear and tangible evidence of system 
responses as perceived by the user. Hence, a user- 
centered approach should supplement any existing perfor
mance criteria to be used. To illustrate this point, the 
reader may wish to examine an example from any BCI 
application domain, for example, assistive technology. If 
the BCI is used to control a mobility assistive device, the 
control interface signals to the device motors are the first 
signs of the outcomes from the internal BCI processes. 
This is also the first encounter the user will have with the 
results of the various parts of the model. The impact on the 
user is substantial, hence performance criteria would need 
to consider the well-being of the user in this context. The 
new IEEE 7010 standard [33] can provide a basis for best 
practices in developing objective performance criteria that 
address well-being. Implications and encapsulate the 
essence of the control interface and BCI functions from 
a user perspective within each specific domain in which 
they are utilized.

5. Conclusions

Brain–computer interface research requires a generally 
applicable functional model to facilitate communication 
between researchers. Therefore, standardizing the func
tional model is integral to BCI research. Furthermore, 
the control interface is an important part of the func
tional model. The control interface provides the funda
mental mechanism for communication within the BCI.

The control interface is responsible for encoding 
incoming signals into symbols that are useful to the 
application. Feedback is also a critical component of 
any control interface. The control interface proposed 
as part of the IEEE P2731 working groups functional 
model is intended to be universally applicable. For that 
reason, it is intentionally not specifically tied to 
a particular BCI application.

The most obvious area for future work is for the IEEE 
P2731 working group to continue to refine both its func
tional model and its glossary. However, there are addi
tional areas of research suggested by this current paper. As 
one example, applying this universal control interface 
model to specific BCI applications. Such specific applica
tions would either validate the universality of the model or 
point to specific areas of the model that would benefit from 
revision.
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