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Abstract—The application of Brain-Computer Interfaces is
expected to become a matter of daily life. For this purpose, several
efforts are being developed to ensure that users can employ this
technology without difficulties. A large amount of studies consider
motor imagery, which implies the usage of sensorimotor rhythms
produced when imaging motor actions. However, previous works
have shown that from a sample of population, a portion of users
(15~30%) is unable to efficiently control a BCI based on such
paradigm. The roots of this issue have been partially located
to different factors related to the training protocol that users
follow to learn how to use the system. Thus, in order to extend
the applicability of BCIs, training procedures must consider
different approaches. Musical imagery is another mental task that
may be used to control BCIs and requires users to have music
related thoughts or imagine specific notes and even songs. In this
work, we propose a protocol to explore the properties of Musical
Imagery based training procedures. For this, we developed both
offline and online experiments, where the last one consisted of 4
sessions. The data-processing steps include filtering the data using
a FIR filter to later extract features using PCA, and classify such
features with a multi-class SVM. Our results show that the offline
classification is comparable to motor imagery based BClIs as the
accuracy is between 80% to 95%. Moreover, we found that the
online setup results point to up to 64% of accuracy for the third
session with feedback.

Index Terms—Brain-Computer Interface, Mental Task, Musi-
cal Imagery, Training Protocol

I. INTRODUCTION

A Brain-Computer Interface (BCI) measures central neural
activity to then transform such signals into control variables
that are used to interact with the environment through different
devices or means [1]. The attention to this technology has
grown exponentially and different approaches to develop them
are being studied [2]. The functional structure of a BCI system
involves different elements, some of them refer to the user,
which explicitly involves psychological states and personality
traits [3]. Further, other elements point to the algorithmic or
data-processing steps in charge of decoding neural signals [4],
[5].

While there is a vast diversity of neural signals acquisition
methods [6], the development of BCIs based on electroen-
cephalography (EEG) is very attractive due to its portability,
non-invasiveness and affordability properties [7]. Nevertheless,
despite the acquisition technique that may be used, any BCI
additionally involves an appropriate user training protocol and
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a task paradigm which are related to both the type of signals
to be employed and the system-user’s goal [3].

For EEG-based BCls, several paradigms have been pro-
posed as exposed in [7]. Their characterization, on the other
hand, may follow the active, passive or reactive description [8].
The key characteristic between all of them relies on the type of
signals that the system analyzes and tasks that the user must
develop. Passive and reactive paradigms are linked to P300
and Steady-State Somatosensory Evoked Potentials (SSSEP).
Further, sensorimotor rhythms and slow cortical potentials are
related to Motor Imagery (MI) [9]. While passive and reactive
BCIs rely on non-entirely intentional neural mechanisms,
active BClIs require the user to modulate his/her brain rhythms
at will. From the user’s perspective, an active BCI seem more
intuitive as it makes the interaction more natural.

The applicability and effectiveness of a paradigm is a result
of different factors that involve user’s psychological traits [10],
and also appropriate algorithms for data processing [11]. As a
matter of fact, while there have been several reports of inter-
and intra-variability which decrease the accessibility of BCIs
[12], there is a clear need for more online studies and with
different approaches to address BCI illiteracy [13]. One of
them is to consider different mental tasks modalities for dif-
ferent population sections, which means to use almost tailored
paradigms or protocols according to users’ characteristics.

Besides MI, other modalities include Auditory Imagery
(AI), in which users evoke characteristic sounds like cat’s
meow [14], and Imagined Speech, that implies a more natural
way of communication [15], [16]. However, the complexity
of the inner speech and languages’ differences makes difficult
to establish a universal protocol [17]. Because of that, Music
Imagery, defined as the imagination of musical elements, is
an attractive alternative given that music, at a psychological
level, produces similar effects despite differences in origins
[18] and provides a good framework for neuroplasticity [19].
Furthermore, previous research showed that the music training
level does not significantly influence on brain responses [20].

In this work, we propose a protocol for BCI systems based
on musical notes imagery. The methodology is inspired on the
Graz protocol [21] and common procedures used for similar
modalities as MI. The effectiveness of the protocol is tested
by implementing an offline framework and an online setup.
The paper is structured as follows: section II outlines related
works and reviews approaches of musicality or auditory based



BCIs. Section III describes the inner working principles of
the protocol implementation. Section IV presents our results
and discussion towards analyzing our contribution critically.
Finally, Section V concludes the paper.

II. RELATED WORKS

According to Gonzalez et al. [22], white noise is the best
sound that can be imagined because its power is uniformly
distributed in the whole spectrum. Thus, by focusing in a set of
frequencies instead of only one, variables as the pitch or tone
can be removed from the analysis. In this work, the experiment
consisted of three phases: white noise perception (5 seconds),
white noise imagery (5 seconds), and silence imagery (8
seconds as rest stage). Once signals were acquired, they were
filtered in two bands: 8-30 Hz and 30-50 Hz, in addition,
they were labeled according to the belonging phase, i.e., noise
imagery was tagged as noise class, and silence imagery as
silence class. For classification, a comparison between Multi
Layer Perceptron (MLP), Linear Discriminant Analysis and
Support Vector Machine was executed, finding SVM as the
best classifier with an accuracy of 93% on cross-validation for
an offline setup. This studied concluded that Auditory Imagery
is a feasible and constitutes a low-cost alternative to Motor
Imagery even considering low-density EEG headsets.

On the other hand, vowel reconstruction has been attrac-
tive considering its intonation and phonology. Rampinini et
al. [23] showed how Italian vowels could be reconstructed
through the integration of motor and auditory cortices activity.
Their results are analyzed from different perspectives. From
the formants and tones view, differences were found among
pitch, key, and harmonic structure. Further, for the articulatory
model, although the difference relies on phonology, data shows
that the significant difference is mostly found on the acoustic
model performance. A similar work was presented by Min et
al. [24], in which Korean vowels were recognized through the
application of a Extreme Learning Machine-based classifier,
a pass-band filter (from 1-100 Hz), a reject-band filter (59-
61 Hz), and a sparse-regression feature selection for statistical
properties of windowed samples. The protocol to acquire the
signals involved three types of phases: beeps, auditory cues,
and imagery.

Other works focus on the rhythmic part of music, coordinat-
ing synchronic and asynchronic tasks with specific instruments
[25] or looking for a piece’s tempo through subject perception
[26]. At a tone level, Chen et al. [27] analyzed high (C6 to C7)
and low (C2 to C3) by observing alpha-band neural signals,
and applying both Common Spatial Pattern (CSP) and LDA.
Their results showed an accuracy of 60%.

The auditory paradigm was compared with others to verify
its efficacy, showing promising results, near to those works
that use motor or visual tasks [25], [28]. Nevertheless, the type
of information that a given subject may consider as familiar
and preferred is not considered [29]. Thus, the commitment of
the subject towards the experiment may be seem diminished,
producing lower results as noted in [3].
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Fig. 1. Offline scheme showing four stages: data acquisition, preprocessing,
feature extraction y multi-class classifier. It should be noted that the classifier
trained in this setup will be used for the next session when using the online
setup. These updates are periodic and run after each session.

III. PROPOSED METHOD
A. General Considerations

The system implementation considered two setups: offline
(Figure 1) and online (Figure 2). While the first one provides
the data that is used to train the system, the second one
provides the respective feedback to the user of how good the
communication is being held between both the BCI and the
user. It should be noted that the online setup uses a classifier
that was trained with the data from the previous offline setup.
However, the classifier is updated after each session. When
the session is over, the obtained data was combined with the
previous session, this way the BCI is constantly adapting to the
user, and the user is constantly learning how to improve his or
her BCI skills. Despite the fundamental differences between
the setups, the signal processing pipeline is the same on them.

B. Data Acquisition

Initially, the procedure included three subjects, but only
two remained in the study. Therefore, while we hold four
sessions, only the two remaining participated in all of them.
Each session lasted from 20 to 30 minutes to keep their
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Fig. 2. Online scheme showing five stages: data acquisition, preprocessing,
feature extraction, multi-class classifier and decoder. The classifier was trained
with data from the previous session. Moreover, the decoder task is to present
the appropriate imagined musical note to the user.
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Fig. 3. Routines’ elementary segment.

attention active [30]. All participant subjects belong to the
musical field to some extent, being the differences on the-
oretical musical knowledge the primary distinction between
them. The corresponding musical background for each subject
is as follows: subject one - amateur (more than 25 years
of experience), subjects two and three - professional (25
and 18 years of experience). The acquisition was performed
using the 14 channel EEG EPOC+ device with 256 Hz as
sampling frequency. The sessions comprised eight routines
that included the audition and imagination of three different
musical notes, which were chosen for each subject according
to their preference. The instrument employed to play the
musical notes was also picked by the user. Each routine is
based on the elementary segment (Figure 3), which included
the audition of a given note for five seconds, a break of ten
seconds for the user to rest, and a period of five seconds
for the user to imagine the musical note. It should be noted
that users were asked to not blink during the first and third
phases of the elementary segment. The overall scheme is based
on the Graz protocol, replacing tasks of what is commonly
motor imagery to musical notes imagery. For each musical
note, ergo each class, four trials were executed using the
listened note mode, and 6 trials using the imagined note mode.
Nevertheless, if the researcher detected an inconsistency like
unexpected blinks during any trial, it was discarded. Listened
and imagined note modes represent different classes because,
according to previous studies [23], there are less activation
during imagery activity when is related to the auditory part.
Imagined notes were used as reference for the subjects, also
allowing a regulated scale for the routine.

The beep between activities consists of a short key hit to
ease the musical note retention and make the interruption
less annoying [31]. Furthermore, each subject had 15 minutes
of previous preparation through meditation to achieve better
performance [32].

C. Preprocessing

In this stage, we prepare data for feature extraction by ap-
plying three pass-band filters with cut-off frequencies of [(3.0-
8.0), (8.0-12.0), (12.0-38.0)] Hz according to theta, alpha, and
beta bands respectively [33]. Later, a Finite Impulse Response
(FIR) filter of 6th order with Blackman-Harris was used as
band-pass filter to minimize the levels of lateral lobes [34],
[35]. FIR filters were applied individually to each channel
through component convolution. The three resulting matrices

from the band-filtering processes are then concatenated in a
final matrix, which will be windowed for further processing.
This process is shown in Figure 4.

The windowing application considered 64 data points,
which is equivalent to 1/4 of a second, due to the 256 Hz
sampling frequency. The time also answers to the duration
of a blink and is similar to what was used in [36], [37].
Additionally, this process extends the data set to avoid model
overfitting [24].

D. Feature Extraction

Once signals are windowed, Principal Component Analysis

was applied to, besides extracting features, reduce the dimen-
sionality [38]. By using PCA, the classifier performance can
be improved significantly. In fact, [39] showed that SVM clas-
sifiers perform better when PCA is included in the processing
pipeline of a BCL
Before applying it, the filtered time series were scaled between
0 and 1, this becomes the entry data set for PCA.
The method seeks to transform a data set X of dimensions n x
m to a new data set Y of lesser dimension with the least loss
of useful information possible. For this reason, the covariance
matrix is used, which can be calculated from:

Yo (Xi—X) (YY)
n—1

cov(X,Y) = (1)

After applying PCA, eight components were used according
to the covariance criteria, but also considering the minimal
number of data points that will be used for the online pre-
processing stage. Data was scaled before extraction and once
features were selected, the dimensionality was reduced in 98%.

E. Classification and Decoding

Considering that three musical notes must be listened and
imagined, six classes are implied. However, by also taking
into account the rest periods in which subjects blink, an extra
class is introduced: blinks. To implement a multi-class SVM,
we focused on the one vs one strategy, i.e., 21 models were
developed to compare all classes individually. The final result
is giving for the decision function “one vs one” of sklearn
SVC classifier, which will take in count the higher value given,

Filtered data
(alpha)

Filtered data
(beta)

Raw data

Concatenated
data

Filtered data
(theta)

Fig. 4. Filtering diagram.



TABLE I
OFFLINE BCI PERFORMANCE. SESSIONS 1-3
ID Session | Training | Validation | Testing
Subject 1 1 0.94 091 0.92
Subject 2 1 0.92 091 0.92
Subject 3 1 0.94 0.93 0.93
Subject 1 2 0.91 091 0.89
Subject 3 2 0.86 0.84 0.83
Subject 1 3 0.91 0.89 0.90
Subject 3 3 0.81 0.79 0.79
Subject 1 4 0.91 0.89 0.84
Subject 3 4 0.72 0.68 0.68

which represents the distance and side of the hyperplane. The
implementation of these models is particular for each subject
and each session.

Given the data distribution, we implemented a soft-margin
SVM [40] and a Radial Basis Function (RBF) Kernel [41]. The
values of gamma and C regularization were tuned through a
grid search, each of them particular to each individual and
session. Furthermore, data was randomly divided into: train-
ing, validation and testing following a 70%-15%-15% ratio.
The SVM hyperparameter were selected using the training set
as priority and validating these according the validation set.
The test set was only used when reporting the corresponding
results in Table I.

Once parameters are chosen for a given session, the model
is kept to be loaded in the the next session during the online
setup. As stated before, the purpose of the online BCI is to
generate the sound in case the classifier that a given musical
note has been imagined. This decoding process responds to a
variation according to the accuracy percentage that the BCI
computes:

e 0-20%: No sound

e 20-40%: Sound at 25% of intensity

e 40-60%: Sound at 50% of intensity

e 60-80%: Sound at 75% of intensity

e 80-100%: Sound at 100% of intensity

The variation of this value will allow the subject to identify
if his or her brain activity is being appropriately classified,
and the level of certainty the classifier has with respect to that
data. This feedback strategy, eases BCI training for further
sessions. For reference, we measured and averaged the time
that the classification processes resulting in 0.6397 seconds,
which represents ~32% of the 2 seconds window time.

IV. RESULTS AND DISCUSSION
A. Offline BCI

After executing the grid search, we analyzed the accuracy
of the different developed models to choose the values that
secured good performance and do not tend to overfitting by
taking a margin between 5 and 20% (variant between ses-
sions). The performance of the best models through sessions
and according to subjects can be found in Table L.

It can be seen that all accuracy results are higher than 80%,
which, considering other works based on auditory imagery or
similar, is significant. As a matter of fact, the approximate
average of works, such as [24], [25], [27], [36], that used
SVM is around 70%, which implies an improvement of over
20% in some cases. Furthermore, this study can be considered
as a continuation to the tonal analysis presented by Chen et
al. [27], with the implementation of five more classes and an
improvement of up to 30% on classification accuracy.

B. Online BCI

Online BCIs are more complex to analyze and to summarize
results given the lag times that can arise due to hardware and
computational issues. Nevertheless, acquired data on the online
setup was analyzed through the signal processing pipeline with
the goal of verifying the data, given that these were still going
to be consider for the next classifier training step. This result
was compared with the ideal matrices considering that users
were instructed to follow the same protocol of BCI training
mentioned on the Data Acquisition section. Due to hardware
limitations that did not allow entirely real-time performance,
such comparisons took data through index-matching, i.e., the
signal processing pipeline used data according to indices on
temporal buffering rather than in a streaming manner. As for
the feedback in the online setup, as noted in the Classification
and Decoding section, this required approximately 2.6 seconds
of data, which meant that users waited a brief amount of time
prior to hear any feedback from the BCI. Unfortunately, the
experiments that included the online BCI carried on only with
two subjects and during three sessions as presented in Table
1L

TABLE II
ONLINE BCI PERFORMANCE. SESSIONS 1-4
ID

Subject 1 Subject 3
Session | Accuracy | Session | Accuracy
1 - 1 -
2 0.41 2 0.36
3 0.54 3 0.41
4 0.59 4 0.51
5 0.64 4 0.54

We believe the online BCI accuracy is significantly lower
than the offline’s due to factors as intra-class variability, but
also the time lag. Considering that our algorithms require at
least the half of the time the phase is designed (2.6 of 5
seconds), the feedback may not be as effective as desired.
Nevertheless, it is possible to detect the improvement on
subjects’ performances. Specifically, subject 1 improved more
than 20%. Finally, a negative aspect is that none of the subjects
were able to overcome the 50% signal intensity which seems to
suggest the need of additional training sessions or the inclusion
of positively biased feedback.



V. CONCLUSION

In this work, we have proposed a protocol for musical notes
imagery based BCIs. As a proof-of-concept we implemented
it on two setups: offline and online. Considering the offline
performance, the proposed protocol is comparable to studies
based on Motor Imagery, presenting a possible alternative to
BClIs training which considers the importance of the user’s
preferences information and possesses musical background.
On the technical perspective, the PCA and RBF-based SVM
implementation shows satisfactory results (best accuracy on
testing equal to 93%). Furthermore, considering the online
performance, despite the low performance results, subjects’
and system continuous learning can be observed. Nevertheless,
current results are promising as the evolution of one of
the subjects is significant. The application of these BClIs is
diverse, while some may focus on making more intuitive brain
based music composition as in [42], others might consider
replacing motor imagery based BCIs for musicians, avoiding
to train specificities as in [43]. Future work should focus on
developing further tests seeking statistical significance of the
protocol and better methods to provide real-time feedback.
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