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Abstract—Gait Recognition, as a way to identify people, is re-
markably attractive for scenarios in which it is not possible to rely
on subjects’ collaboration. Nevertheless, from all the modalities
that Gait Recognition involve, vision-based approaches are better
to meet hardware and settings-limitations. Because of that, in the
past years, there has been several efforts on developing robust
algorithms against visual gait covariates, i.e., view, clothing and
carrying variations. However, besides robustness, real-world gait
recognition systems also require to be implemented considering
near real-time computational demands as well as portability. In
this work we propose an Edge Computing approach based on
the NVIDIA Jetson Nano development board and the OpenCV
OAK-D camera to perform Gait Recognition. To adapt our
approach, we created two small data sets that allowed our system
to particularize the system to local data. Our pipeline implies
the usage of a pre-trained object detection algorithm in the
OAK-D, and the execution of both the representation extraction
and inference on the Jetson Nano. To test our framework, we
first explore its feasibility and consistency in an offline manner.
Later, we characterize the complexity and time processing when
executing the procedures in an online setup. Our results show
that the approach is promising as it allows online operation with
an inference time of 35.8 ms.

Index Terms—Gait Recognition, Biometrics, Edge Computing,
Real-world conditions, OAK-D

I. INTRODUCTION

Gait recognition is conceptualized as the usage of the
walking pattern, that a given individual has, for identification
purposes [1]. While simple to understand, this pattern, which is
called gait, is a product of a diverse unique attributes as height
or age, and it is described in physiological or computational
features [2].

The application of gait recognition is natural for automatic
surveillance systems. As a matter of fact, there are plenty of
solutions that aimed at such goal [3]. The clear advantages of
these implementations rely on the non-invasiveness property of
the method, as it does not require subjects to collaborate, and
the robust performance at distance when using vision-based
approaches [4]. Furthermore, considering the current context
in which several parts of the world mandate the use of face
masks, gait is a feasible biometric trait given that systems
based on face recognition may be impacted [5].

While automatic and smart surveillance systems are a key
concept for smart cities [6], these are also urgently required

for human trafficking prevention or general security issues.
For both scenarios, gait recognition supposes an attractive
topic because - in each of them - subjects of interest won’t
provide collaboration to build the necessary representations.
On the other hand, the implementation of vision-based gait
recognition systems does not require high-resolution or high-
quality imaging [7] and good performance is achievable
through simple but efficient workflows as in [8], [9].

Despite the remarkable results that gait recognition systems
show [10], these are mostly effective in lab settings, which
means that there are very well-known issues that should
be overcome. Issues raised by variations in clothing, views,
lightning conditions, carrying and others produce significant
drawbacks in subjects identification [11]. Moreover, although
state-of-the-art gait recognition achieves high accuracy rates
(90% or even more) in situations where training and test data
are captured under similar conditions, these works typically
focus on offline processing such as [12].

Gait recognition in real-time through online processing is
still a challenging task mainly because of the high com-
putational cost that supposes high-performance human pose
estimation or segmentation algorithms. To face these chal-
lenges, Edge Computing has been used and shown excellent
results during the inference phase of Deep Learning algorithms
by leveraging the resource-constrained available hardware for
vision-based solutions, which makes it appropriate to reach
real-time processing [13].

In this work, we propose an scalable edge computing
approach to identify a person according to his or her gait.
The system, by design, works in real-time and is relatively
robust to known covariates as clothing and carrying variations.
The paper is structured as follows: in section II, we describe
related works; in section III, we the system’s structure and
the experimental considerations; in section IV, we show our
results and discuss their implications; finally, we conclude the
paper in section V.

II. LITERATURE REVIEW

Deep Learning methods involve high computational costs
due to the large number of mathematical computations re-
quired [14]. This makes difficult to execute these algorithms
in real-time and opens the perspective to Cloud and Edge
Computing, which aim at accelerating the inference processes
providing support for real-time services [15]. On one hand,978-1-6654-0810-3/21/$31.00 ©2021 IEEE



Cloud Computing focuses on the implementation of a powerful
centralized Deep Learning infrastructure, but it has several
limitations related to network communication and latency.
On the other, Edge computing offers much more flexibility
by using locally available resources [16]. Considering that,
current advances on Computer Vision make use of these
methods, previous concerns are also valid for vision-based
Gait Recognition.

The concept behind Edge Computing is deeply related to
both real-time response systems and portability. According to
Khan et al. [17], it is defined as the extension of Cloud Com-
puting where the services are brought closer to the end-users,
i.e., at the edge of the network. In fact, this paradigm leverages
several limitations which Cloud Computing already has. For
example, it alleviates the computational process during the
inference stage making the user experience smoother [16].

The match between Edge Computing and Gait Recognition
happens when a given system must answer online. Unfortu-
nately, most approaches dealing with that integration do not
focus on visual information, but rather on accelerometer data
[13], or RFID technology [18]. Actually, to the best of our
knowledge, the concept of vision-based gait recognition using
Edge Computing hasn’t been explored. Nevertheless, there
are different works in which Computer Vision procedures
have been explored through Edge Computing. For example,
in [19] a tracking and counting system was developed using
MobileNet, and in [20] authors designed a system to assess
defects on products’ images employing faster R-CNN.

III. MATERIALS AND METHODS

In this section, we will briefly describe the datasets used for
the experiments, the proposed framework, and the techniques
employed to complete each one of the stages of our system.

A. Datasets

We used three datasets for our experiments: CASIA-B
[21], which is well-known gait dataset used for benchmarking
gait models; UCB-Gait53, that comprises the information of
53 subjects recorded at 90, and OAK-Gait8, a new dataset
built with OAK-D devices. The last two datasets, were col-
lected at Universidad Católica Boliviana facilities and are
brand new to the community. These are accessible through
https://www.imt.ucb.edu.bo/cidimec/gait-recognition/.

Similar to CASIA-B, which includes data from 124 subjects
through 11 views (0 − 180, with separations of 18) and 10
sessions (6 normal or “nm”, 2 carrying-bag or “bg”, and 2
wearing-coat or “cl”), UCB-Gait53 (UCB dataset) follows the
same convention but with only one view (90), 53 subjects and
RGB recordings at 30FPS in 1080p. Unfortunately, we only
could access the uncorrelated videos and binary masks from
CASIA. Finally, OAK-Gait8 (OAK dataset) was collected with
five OAK-D cameras, and it contains the information of 8
subjects recorded at 30FPS in 1080p, and walking directions
of 60, 75, 90, 105, and 120. Moreover, due to the RGB-D
nature of these cameras, we were able to capture three records
per each OAK-D, making this dataset suitable for RGB-D

Fig. 1. Sample images from the CASIA (first row), UCB-Gait53 (second
row), and OAK-Gait8 (last row) datasets

processing. Similar to CASIA, OAK-Gait8 has 6 normal, 4
carrying-bag, 4 and wearing-coat walking sequences. Since
our experiments mainly focus on exploring the edge of com-
puting, all the tests have been carried out using side view.
Fig. 1. shows some sample images from each dataset in all
the conditions.

B. Framework

Our framework is based on [22], however, we included
an initial step of detection and segmentation so that we can
use video recordings instead of pre-segmented masks. As
for the representation, feature extraction and selection, and
classification, we kept the same as [22].

1) Detection: The input data in our model is composed of
frames belonging to video sequences, yet live video can also
be used. Hence, the first step consists on detecting the objects
of interest, that in our case are people. To achieve this, we
used the default model of MobileNetV2 provided by OpenCV
[23].

2) Segmentation: Once the position of the subject in the
scene has been determined, if any, it is necessary to obtain its
silhouette. As a first step, we trained a custom segmentation
model based on a U-Net and the UCB dataset given that the
CASIA-B dataset will be used to compute the performance
of our model. However, generating the ground truth for a
segmentation task is a tedious and costly process. Thus, we
computed the binary masks corresponding to the subjects sil-
houettes using background subtraction followed by correction
steps such as filtering and morphological operations. After this
step, ∼ 30M pairs of image-mask were collected to train the
model.

We adapted U-Net from [24]. Since large images are not
needed and a small model is aimed to run an edge device.
We noticed that the skip connections helped us to relieve the
bottleneck problem and increased the recognition accuracy.

3) Later stages: We used the modified GEI (MGEI) spatio-
temporal gait-representation [22], which is produced by av-



eraging the silhouettes extracted over a complete gait cycle
without considering the chest and hips. The MGEI keeps
the GEI robustness to noise and efficient computation, but
it is ideal for side-view scenarios. Given that MGEI are
high dimensional representations, we used PCA for feature
extraction and selection to keep minimum redundancy and
improve the performance of our classifier, hence, speed up
the computation. Finally, to simplify computations, we used
an LDA classifier since this linear discriminant combined with
PCA obtains a good performance in side-view configuration
[9].

4) System workflow: The whole system can be divided into
two main stages: offline and online processing, as seen in
Fig. 2. It may seem pretty straightforward, but the interaction
between the different components differ in each stage.

In the offline stage. First, we use the UCB dataset to
generate the training data for learning the segmentation model
through a simple background subtraction step. Then, these
pairs of image-masks generated are used to train the U-Net,
which will be used later during the online processing. As next
step, we perform the representation of the gait cycles of all
the subjects in CASIA-B. These representations along with the
target IDs are used to train an LDA classifier, which again will
be used later. All this process has been executed in a CPU.

In the online processing stage, the input to our system are
RGB video recordings, though it is also possible to use live
video. The first stage correspond to detection, which is done by
the pre-trained MobileNetV2. The localization of the subject
in the scene is used to crop that region and infer the silhouette
using the pretrained U-Net. These binary masks are stacked
and used to compute the representation, which is finally fed
to the pretrained classifier to infer the ID of the subject who
is walking in the video.

IV. RESULTS AND DISCUSSION

A. Training the segmentation model

For training the segmentation model, we trained multiple
models with different architectures, taking into account the
architecture recommendations from [25] and [24].

1) Training details: The U-Net can be divided into an en-
coder and a decoder, both use convolutional modules, instance
normalization, and Leaky activation. To denote theses, Ck will
represent a module composed of convolution-normalization-
Leaky with k filters. Whereas CDk states for a module
of convolution-normalization-dropout-Leaky activation with k
layers and a dropout of 0.5. In the encoder (E), the convolu-
tions downsampled the feature maps by a factor of 2, and the
decoder (D) upsampled them by the same factor. In total, we
trained three networks with the next structure:

• Model A: E:C16-C32-C64-C128; D:CD128-C64-C32
• Model B: E:C16-C32-C64-C128-C128;

D:CD256-CD128-C64-C32
• Model C: E:C32-C64-C128-C128-C128;

D:CD256-CD256-C128-C64

TABLE I
SEGMENTATION RESULTS

Model Parameters Training Test accuracy
acc loss acc loss

A ∼220K 0.9451 0.0845 0.9457 0.0826
B ∼590K 0.9525 0.0641 0.9522 0.0649
C ∼1.02M 0.9560 0.0516 0.9558 0.0523

TABLE II
IDENTIFICATION RUNNING ON EDGE AND OFFLINE COMPARISON

Model Inference
(ms)

CCR
nm

CCR
bg

CCR
cl

Power
(mW)

[26] - 0.95 0.88 0.76 -
[27] - 0.96 0.65 0.43 -

Ours - 0.98 0.84 0.65 -
A 32.5 0.70 0.52 0.50 3324
B 34.7 0.50 0.40 0.43 3406
C 35.8 0.60 0.52 0.5 3449

We used Adam to train the models. We noticed that good
performance was achieved after 10 epochs plus 5 more using
a learning rate of 2E-2 and 2E-5 respectively, in addition
to momentum parameters of β1 = 0.5, β2 = 0.999. The
training process was implemented in Python using Keras and
TensorFlow in Google Colab. Thus, the experiments run in a
2.3 GHz dual-core processor with 25 GB of RAM, and an
NVIDIA Tesla K80 graphic card with 12 GB of memory, and
2496 CUDA cores.

2) Results: The table I shows the training and testing results
of each model along with their amount of parameters. As it
can be seen, the bigger the model, the higher the segmentation
accuracy and the lower the loss.

B. Identification

Table II shows the recognition accuracy on the CASIA-B
dataset. The first two rows correspond to the reported values
from other works which follow the same experimental setup as
us. The third row corresponds to our model during the offline
train-testing using the precomputed binary silhouettes. The last
rows show the results obtained when processing online the
video recordings using the pretrained models for segmentation.
We also estimated the energy consumption by the Jetson Nano,
so we can also understand how models behave. The results
point to a very similar behavior between them, which suggests
that the corresponding computational load is alike. This is an
expected result, given that the models are not being executed
in the Jetson Nano.

As shown in Table II, appearance variations such as clothing
or charging change drastically affects the recognition perfor-
mance. Although the CCR in normal conditions it considerably
high in [26], [27] and in our offline model, in real-world
scenarios, clothing changes are impossible to avoid.

V. CONCLUSIONS

Gait Recognition is an attractive topic for developing smart
surveillance systems. However, its deployment on real-world
condition depends on the development of edge computing



Fig. 2. System workflow. The image allows to differentiate between the offline and online stages that were followed.

solutions for the task. In this work, we proposed an edge
computing approach for gait recognition using as a frame-
work the combination of the Jetson Nano and the OpenCV’s
OAK-D. Our results show that the deployed models on the
OAK-D, and the implemented algorithms on the Jetson Nano
make the framework suitable for Edge Computing based
Gait Recognition. In addition, we contributed with two new
Gait Recognition data sets which will be available to the
community. Finally, this work also provides the background
to start developing more intelligent approaches for real-time
processing, e.g., better spatio-temporal sampling methods.
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