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Abstract. Airborne diseases are easy to spread in the population. The
advent of COVID-19 showed us that we are not prepared to control this
type of disease. The pandemic has drastically posed challenges to the
daily functioning of public and private establishments. In general, while
there have been several approaches to reduce the potential risk of spread-
ing the virus, many of them rely on the commitment that people make,
which - unfortunately - cannot be constant, e.g., wearing a facemask in
closed environment at all times or social distancing. In this work, we pro-
pose a computer-vision system to determine the risk of airborne disease
spread in closed environments. We modify and implement the Wells-Riley
epidemiological equation. We also evaluate the Openvino Models Zoo for
people detection with mAP, precision, recall and F1-Score. For mask de-
tection, we applied transfer learning and obtained the best performance
for a model based on MobileNetV2. The generated data from several de-
vices is visible in a web platform to monitor multiple areas and locations.
Finally, an OAK-D camera and a Jetson device are embedded in a end
device meant to monitor a closed environment and send spread risk data
continually to the web platform. The results obtained are promising and
suggest that such a system is beneficial to control, measure and prevent
airborne contagion.

Keywords: Airborne Disease · Risk Assessment · Stereo Vision · Edge
Computing.

1 Introduction

In the past few years, society has become more conscious of airborne diseases
due to the disruption caused by the COVID-19 pandemic. Different from other
illnesses transmitted between people, viruses or bacteria of airborne diseases can
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stay in the air mixed with dust particles and respiratory droplets for longer
times. Then, these particles are eventually inhaled by other people and cause a
spread of the disease. Airborne diseases comprise Measle, Tuberculosis, Chicken-
pox, Influenza, Pertussis, SARS-CoV-1, and SARS-CoV-2, among others. Even
though the contagious rate and symptoms vary between them, their control and
prevention are similar and consist mainly of the installation of isolation rooms for
infected people, use of protective clothes such as Personal Protective Equipment
(PPE), facemasks, and gloves, better ventilation for closed environments, and
stricter practices of sanitation and hygiene. In-depth investigations on SARS-
CoV-2 spread proved that the closer or denser a group of people, the higher the
risk of airborne disease contagion [1].

The current research aims to propose a computer vision-based system to
monitor the spread risk of an airborne disease. We considered Coronavirus 2019
as a study case for the investigation. This disease, also known as COVID-19,
is caused by the SARS-CoV-2 virus and has different symptoms such as fever,
breathing difficulties, fatigue, tiredness, cough, and loss of taste and smell [1].
So far, it has spread through 591 million people and caused 6,4 million deaths
worldwide as of August 19, 2022 according to [2]. Although there is a greater
percentage of healthy people that have not got reportedly infected, this disease
has completely affected the lifestyle of the entire world population. While many
developing countries chose to close borders and declare quarantines to stop the
spread, others decided not to dictate strict measures to avoid economic slowdown
and job instability [1]. Nevertheless, all developing countries were obligated to
return to the new normality. Consequently, since a rapid increase of infected
people with new variants can collapse any healthcare system, there is a constant
research need for new control and prevention methods.

The paper is structured as follows. We first review some related works in Sec-
tion 2. Then, we adapt an epidemiological model by considering several concepts
from Wells-Riley estimation model in Section 3. Later, we explain the details of
the computer vision models for person and mask detection in Section 4 which
is complemented with the description of the distance estimation in Section 5.
Moreover, we explain how the monitoring system works in Section 6 and present
our results discussing their implications in Section 7. Finally, we conclude the
paper in Section 8.

2 Related Works

By the end of 2019, the initial breakthrough of the SARS-CoV-2 virus led to a
massive number of deaths and the declaration of a worldwide pandemic. This
encouraged many computer vision developers and researchers to collaborate to-
wards the development of new ideas to prevent the virus spread. Since keeping
physical distance of at least one meter from others has proved to be one of
the most effective measure against SARS-CoV-2 [2], extensive research has been
carried out for the development of Visual Social Distance Monitoring Systems
(VSDMS) [3]. Nevertheless, other projects complemented the distance measuring
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idea with face masks detection, or face-hand interaction [4] [5] [6] for controlling
that people comply with measures against a contagion.

Computer Vision approaches are influenced by how images are taken, which,
by default, is linked to the camera perspective and point-of-view. For example,
authors in [4] used an overhead perspective while researchers in [7] used a top
view, both to control a wider scene of an open area. Also, other studies propose
distinct fields of application, from robots that continuously navigate through
a room to monitor social distance [8], to headsets and wearables that prevent
people from getting too close to each other by activating sound alarms [9].

The state-of-the-art proposals to measure physical contact among people
can be classified as either 2D based or 3D based. The former commonly uses
a sequence of methods to recognize people: a) image processing; b) image seg-
mentation; c) shape extraction; d) object recognition. This last step might vary
from classical computer vision-methods [10] to deep learning-based methods [11],
[4], [12], [5], [6]. Focusing on deep learning methods, researchers usually imple-
ment object detectors based on Convolutional Neural Networks (CNNs) such as
YOLOv4, Yolov5, MobileNet, SSD, or R-CNN [13] to measure social distance by
detecting pedestrians. Then, the investigations regularly calculate the pairwise
Euclidean distances among the centroids of the detected bounding boxes [4],
[3]. These models are commonly applied to video processing given that monitor-
ing an environment requires continuous surveillance. Consequently, in order to
reduce the high computational cost, state-of-the-art proposals combine the per-
son detectors with object tracking algorithms such as DeepSORT, SORT, and
StrongSort [14], [15]. Given a set of bounding boxes enclosing people found by
an object detector, object trackers focus on estimating or predicting the position
of the bounding boxes in each consecutive video frame.

Even though camera-based surveillance systems have been developed up to
the point of becoming commercialized solutions [9] [16] [17], this brief litera-
ture review let us note that 3D vision has been less explored despite its higher
accuracy for distance calculation. A recent study has proven that 3D visual in-
formation can be estimated using monocular cameras to monitor social distance
[18]. To the authors’ best knowledge, researchers in [19] have been the first to
publish about the application of stereo-vision in a VSDMS in April 2022. There,
researchers describe a new VSDMS, which implements stereo and monocular
cameras. Moreover, they explain their deployment process in an indoor hospital
environment and conclude that stereo-vision cameras were superior than regular
cameras. Specifically, they use a Zed M Camera and an MSI laptop equipped
with NVIDIA GTX 1060 3GB GPU, with which they stream videos and obtain
depth maps. Beyond the published work in indexed venues, developers in [20]
and [21] apply stereo-vision cameras for social distance monitoring in September
2020 and January 2021, respectively.

So far, most of the previously mentioned research focused on detecting phys-
ical distance among people and face masks in order to notify authorities about
protective measures noncompliance. Nevertheless, only a few works explore fur-
ther implications and contagion risk assessment by leveraging the extracted vi-
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sual information of the protective measures compliance. For instance, investiga-
tors in [15] contributed with a remarkable online infection risk assessment scheme
for open environments named DeepSocial, which considers people’s moving tra-
jectories and the rate of social distancing violations to calculate the contagion
risk. Moving on, researchers in [22] propose BEV-NET to assess social distancing
compliance and probability of infection in closed environments using a monocu-
lar camera from a top perspective. Additionally, this investigation proposes the
COVID-19 infection risk assessment for each individual present in a scene and
a general risk assessment for the complete ambient. In both projects, the closer
or denser a group of people is, the higher the risk of contagion [22], [15].

In contrast to COVID-19, the monitoring of infection risks of other airborne
diseases such as MERS, Rhinovirus, or Adenovirus by recognising the protective
rule’s compliance is less investigated, however, their risk quantification can also
be implemented using the approaches proposed for COVID-19. The multiple
waves of SARS-CoV-2 have taught us that airborne diseases can severely affect
the economy and normal functioning of an entire country, therefore, there is a
shortage of research to have better tools that monitor and inform the risk of
contagion in an ambient. All these to provide confidence to citizens and users in
public and closed environments.

3 Epidemiological Model

This section describes the definition of the equation for estimating the spread
risk of a airborne disease in a closed environment. We know that the classification
of risk prediction models can be split into Wells-Riley based and Dose-Response
based models [23]. We analyze the first one and modify it so that the implemen-
tation is feasible in a computer vision monitoring environment.

Wells developed an equation to estimate the risk of infection in a close envi-
ronment [24]. Riley proposed an improvement to the equation, considering the
ventilation of the room as a parameter [25]. The Wells-Riley equation general-
izes the infectivity of pathogens with a new infectious dose unit called quanta.
A quanta is the number of infectious particles required to infect a person [26].
So a quanta of influenza would infect the same number of people as a quanta of
tuberculosis or COVID-19. If the disease is more contagious, the infected person
would have a higher quanta emission rate.

The Wells-Riley equation is defined by Equation 1:

Pi = 1− exp

(
I ∗ q ∗ p ∗ t

Q

)
(1)

Where, Pi is the probability of infection, I is the number of infected people,
q is the quanta emission rate, p is the pulmonary ventilation rate of a person,
t is the exposure time, and Q is the ventilation rate of the room [26]. For this
investigation, each of these parameters were obtained as follows:
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– Number of infected people (I):
Wells-Riley estimates the risk of infection based on a certain number of in-
fected people [26], however, we cannot know this information with entire
certainty. We calculate the probability of infected people based on the pop-
ulation percentage of cases in a region:

pc =
c

Pr
(2)

Where, pc is the percentage of cases, c is the number of cases in a region,
and Pr is the total population of the region. If we multiply the percentage
of cases by the number of people in a room, we obtain the probability of
infected people in that room. So, our value for I is:

I = N ∗ pc (3)

Where N is the number of people.

– Quanta emission rate (q):
The quanta generation rate is the only parameter that contains the infectiv-
ity of the virus [26] [14], so each pathogen has its own value of q. Mikszewski
et al. [27], analyzed the quanta generation rate for the most common air-
borne diseases, including SARS-CoV1, SARS-CoV2, MERS, Tuberculosis,
and Influenza. These values are constants in the monitoring system and are
described in Table 1.
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Table 1: Quanta emission rate values [q ∗ h−1] [27].

Pathogen Resting,
oral breathing

Standing,
Speaking

Light activity,
speaking loudly

SARS-CoV-1 0.0084 0.042 0.71
MERS 0.011 0.056 0.96
Tuberculosis (On Treatment) 0.020 0.098 1.7
Influenza 0.035 0.17 3.0
Coxsackievirus 0.062 0.31 5.2
Rhinovirus 0.21 1.0 18
SARS-CoV-2 0.55 2.7 46
Tuberculosis (Untreated) 0.62 3.1 52
Adenovirus 0.78 3.9 66
Measles 3.1 15 260

Li et al. determined that the viral load, therefore also the quanta, is al-
most the same between presymptomatic, asymptomatic, and symptomatic
subjects [28]. In the case of the advent of a new airborne disease or actual
disease variant, the value of q should be calculated using Equation 4:

q = cv ∗ ci ∗ p ∗ vd (4)
where, cv is the viral load, ci is a conversion factor between a quanta and
the infectious dose, p is the inhalation rate, and vd is the volume of droplets
expelled by a person [29].

– Pulmonary ventilation rate (p):
Adams [30], conducted a study where he empirically determined the aver-
age person inhalation rate for different activities. Table 2 shows the values
obtained from this study, which are used in Equation 1.

Table 2: Inhalation rate values [30].
Activity Inhalation Rate [m3 h-1]
laying down 0.49
stand 0.54
very light exercise 0.72
light exercise 1.38
moderate exercise 2.35
heavy exercise 3.30

– Ventilation rate of the room (Q):
It refers to the ACH (Air Changes per Hour) value of a close environment.
To obtain this parameter, first we determined the air flow rate.

AFR = w ∗Av (5)
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In Equation 5, AFR is the air flow rate, w is the window area, and Av is the
air velocity. Finally, the ACH is the Air flow rate divided by room volume
(VR)[31].

ACH =
AFR

VR
(6)

In case of having artificial ventilation, the ACH value can be obtained from
the specifications of the machine, and should be added to the natural venti-
lation calculated in the equation 6.

– Exposure time (t):
This parameter refers to the time that "I" number of infected people will re-
main in the closed environment. Note that the Wells-Riley formula requires
the total exposure time as a parameter. And, in this research, the objective
is to implement it in a monitoring system, so the number of infected people
for a specific time is variable and will be calculated in real time.

We can represent the Wells-Riley equation with the use of integrals for the
time variation:

Pi = 1− exp

(∫ ∞

0

I ∗ q ∗ p
Q

dt

)
(7)

– Facemask detection:
Wells-Riley does not consider if people wear facemasks, which is required for
estimating the spread of a disease in a closed environment. Therefore, we
implement an additional parameter to the equation considering that we will
monitor the presence of facemasks on the detected people’s faces.

It is well-known that the worst type of facemasks are made of cloth, so we
consider it as the default type of facemask used by everybody detected in a
scene. It is worth noting that the use of cloth facemask reduces the contagion
risk of an airborne disease by half [32]. From the Wells-Riley equation, we
know that if we double the ventilation rate, we also halve the risk of spread.
Consequently, the final equation is:

Pi = 1− exp

(∫ ∞

0

I ∗ q ∗ p
Q ∗ (1 +M)

dt

)
(8)

Where M is the percentage, in range [0, 1], of people wearing a mask in a
closed environment.

4 Person and Mask Detection

In the proposed system, two CNN-based object detection models localize person
and facemask appearances in the frames coming from the OAK-D camera. The
collected datasets, the object detection models, and most importantly, the used
metrics are presented in the following subsections.
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4.1 Dataset and Preprocessing

We collected the dataset of person and mask instances separately through three
different means: web scrapping, video processing, and public datasets. First, we
developed a Python script to download images from Google images. The terms
used to find people images were: "pedestrians", "people in room", and "meet-
ing". Once we obtained 377 images, we needed to review their quality due to
some unrelated images downloaded by mistake. Second, we used the Computer
Vision Annotation Tool (CVAT) [33] to obtain image samples of people and face-
masks independently by labelling video frames. This let us get 1,084 instances
of people and 337 instances of facemasks. Finally, we obtained 756 images by
combining public datasets [34]. All these subsets were sorted to create two sub-
sets: one with instances of people without facemasks, and another with images
with facemask instances. Since the subsets were small, we needed to implement
data augmentation techniques, such as horizontal flip, brightness change, and
grayscale, by using the Roboflow platform [35].

Table 3: Datasets
Subset Collected Augmented Total
Person Instances 1084 2277 3361
Facemask Instances 337 606 943

4.2 Object Detection

First, instead of creating and training object detection models from scratch,
the person detection models that we tried were based on pre-trained architec-
tures provided by Intel OpenVino [36]. Specifically, we tested the models person-
detection-0200, person-detection-0201, person-detection-0202, person-detection-
0203, and person-detection-0302 carefully to achieve a good performance with
our collected dataset. In addition, it is worth mentioning that OpenVino models
can be easily deployed on OAK-D devices by using the MiryiadX Blob Con-
verter [37], which made us decide to use them. Secondly, for facemask detection,
we applied transfer learning to re-train the models Yolov3, Yolov3 Tiny, and
Mobilenet v2, which had been previously trained with bigger datasets. It is im-
portant to note that several developers who worked with OAK-D devices defined
Mobilenetv2-based models as the best object detectors to deploy on them [36].

4.3 Metrics

Intersection Over Union The main tool to evaluate the human and face-
mask detection models with respect to each localized bounding box was the
Intersection Over Union (IoU). This metric, also known as the Jacquard In-
dex, measures the overlap area between the ground-truth bounding boxes and
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the predicted bounding boxes, and ranges between 0 and 1. For object detec-
tion tasks, it is recommended to set different IoU thresholds to take a detected
bounding-box as true positive, true negative, false positive, or false negative. In
the current project, we calculated used IoU@50%, which means we defined 0.50
as the threshold to calculate the the metrics.

Precision and Recall To evaluate the general performance of the object de-
tection models with respect of a subset, precision and recall values were used.
Precision shows the percentage of correct predictions among all the positive-
predicted images while recall describes the percentage of actual positives that
was identified correctly. Both are better defined in Equation 9 and Equation 10.

Precision =
TruePositives

TruePositives+ FalsePositives
(9)

Recall =
TruePositives

TruePositives+ FalseNegatives
(10)

Mean Average Precision Commonly, precision and recall can be plotted
against each other to obtain the precision-recall curve, and the Average Pre-
cision will be the area under this curve. This metric is defined in Equation 11,
where r represents recall, p represents precision as a function of r. Therefore,
p(r) means “precision at recall r”.

AP =

∫ 1

0

p(r) dr (11)

Given that the person and facemask detection models were applied separately,
Mean Average Precision (mAP) in our case is the same as Average Precision
(AP). However, it is worth mentioning that mAP is the mean of Average Pre-
cisions of all individual classes for multi-class detection tasks and should be
calculated as in Equation 12.

mAP =
1

N

N∑
i=1

APi (12)

Here, mAP is Mean Average Precision, N is the number of class labels, and
APi is the Average Precision for the ith class. We considered and calculated mean
average precision for different IoU thresholds: mAP@50% IoU, mAP@75% IoU,
mAP@50%:5%:95% IoU.

F1-Score Finally, both precision and recall were used to calculate the F1-Score
metric provided in Equation 13. The benefit of this metric is that it considers
the number of prediction errors that the model makes and also the type of errors
that are made. We calculated this metric with an IoU threshold of 0.5.

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(13)
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5 Distance Estimation

To calculate the distance among people, we need to estimate the relative posi-
tion of the objects detected with respect of the camera. Stereo-vision helped us
estimate these distances and positions by obtaining a three-dimensional view of
a scene through the OAK-D camera and its binocular vision. Stereo-vision can
be applied to calculate the depth of an object by making use of the angle of
convergence.

Fig. 1: Stereo-vision definition, where α is the convergence angle, D is the dis-
tance between the camera and the detected object, and i is the distance between
cameras. F1 and F2 are different objects, which have different distances, and
therefore, different angles [19].

As shown in the Figure 1, the convergence angle α2 is in the middle of the
two monocular cameras that capture an object located on the front [19]. Also,
this angle varies depending on the distance of the object detected, this allows a
precise approximation of its real distance. We used the OAK-D device built-in
functions to calculate this distance. Specifically, the function used was "Spatial
Location Calculator" [38]. In order to control social distancing, we calculated
the Euclidean distance between each person, defined by Equation 14, where d is
the distance between person p1 and person p2, and x, y, z refers to the positions
in the three dimensional plane.

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (14)

6 Monitoring System

Combining the result of Wells-Riley equation and the positions of the people
determined by the stereo camera, we can analyze the sectors with the highest
risk of infection in the monitoring area. We implement a Gaussian analysis to
distribute the concentration of infectious particles. The Fig. 2 shows an analysis
of a room monitoring COVID-19 for a period of 3 hours.
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Fig. 2: Gaussian analysis of quanta concentration

In Fig. 2, the highest points represent the sectors where people remained
for the longest time. Additionally, we send the data to an online monitoring
system shown in Fig. 3. This system was developed as a web application and was
deployed on a cloud server, which collected the airborne spread risk calculated
from multiple end-devices. If the risk in an environment exceeded a threshold, the
system sent notifications via Telegram to alert the authorities. Specifically, Fig. 3
(a) shows an example of the interface in which a bank can register multiple areas
for real-time surveillance. The system was developed to monitor multiple areas
by collecting data from end in several public places. For instance, the interface
shown in Fig. 3 (b) was the detail view that helped us monitor a specific closed
environment every 30 seconds.

(a) Web application to monitor
multiple places.

(b) Detail view of a closed
environment.

Fig. 3: Online Monitoring System.
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About the end-device, this was designed using SolidWorks, assembled with
3D printing and installed to monitor a closed environment continually. Internally,
the device consisted of a Jetson Nano computer and an OAK-D camera. The final
design is shown in Fig 4. The device has a screen that shows the risk of spread,
as well as, activates an alert when the calculated risk exceeds a safety threshold.

(a) Disassembled. (b) Assembled.

(c) Real Device.

Fig. 4: Monitoring Device.

7 Results and Discussion

In the validation of our Wells-Riley model, the results shows that our equation
obtains a value close to the study of [39]. We used the same input in the equa-
tion 8 and the result obtained was 9.88 which is similar to the result obtained
by the reference study (10.0). This value was expected because the equation was
not modified in essence, and the structure was only slightly changed to allow
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different input values. We can conclude that the small difference between results
in [39] and our result is because the authors did not report their result with
decimal values.

For the person detection models, we evaluated several architectures provided
on the OpenVino public repository [36]. These tests were performed with the
total subset named "Person Instances", described in Table 3. As mentioned
above, we mainly decided to use these models because they were already trained
with bigger datasets for person detection. The resulting metrics are shown in
Table 4, which shows that the the model person-detection-0203 obtained the
best result for the mAP metric. In this table, the column Complexity defines
the number of computational operations to pass a frame through the model.
Size define the footprint of the memory needed for each prediction. Given that
person-detection-0203 obtained the best performing results, it was deployed in
the OAK-D device for continuous tracking.

Table 4: Results of the tested models for person detection from [36]. Complexity
column is in GFLOPS. Size column is in Mp. mAP, Precision, Recall, and F1-
Score are in percentage.
Model Complexity Size mAP Precision Recall F1-Score
person-detection-0200 0.786 1.817 70.23 71 59 64.46
person-detection-0201 1.768 1.817 67.83 63.86 52.3 57.50
person-detection-0202 3.143 1.817 71.39 68.34 55.6 61.31
person-detection-0203 6.519 2.392 73.02 72.1 62.1 66.7
person-detection-0302 370.208 51.164 71.23 69.85 56 62.2

Using the obtained datasets, we train a model with Tensorflow in Google
Colab. This task was performed using the Luxonis [40] training instructions.
Transfer learning was used with MobileNetV2 and the results of the training are
described in the table 5.

Table 5: Results of the trained model with MobileNetV2 for facemask detection.
Image size mAP
Large 0.49738526
Medium 0.25847965
Small 0.06959111
IoU=.50 0.57984364

The table 5 shows that the model is not good at making inferences on small
or distant objects. However, in the implementation the model proved to have
excellent inferences.
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8 Conclusions

In this paper, we proposed the implementation of epidemiological models in
computer vision systems, with the aim of reduce the spread of airborne diseases.
We develop a new version of the Wells-Riley equation capable of calculate the
risk of infection in real time. We use object detection models to determine the
number of people in an environment, as well as the number of people wearing
masks. We implement stereo-cameras and Gaussian mathematical models to
obtain a three-dimensional map of the sections with the highest risk of infection.
All information is sent to an online monitoring system, with which multiple
environments can be monitored. An important limitation is that our percentage
of infected (I) is an estimate and it cannot be guaranteed that it is the real value
of infected in the environment. An oversize can be added to this value in order
to prevent false security values.
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